47 research outputs found

    Electron scattering on circular symmetric magnetic profiles in a two-dimensional electron gas

    Full text link
    The quasi-bound and scattered states in a 2DEG subjected to a circular symmetric steplike magnetic profile with zero average magnetic field are studied. We calculate the effect of a random distribution of such identical profiles on the transport properties of a 2DEG. We show that a nonzero Hall resistance can be obtained, although =0=0, and that in some cases it can even change sign as function of the Fermi energy or the magnetic field strength. The Hall and magnetoresistance show pronounced resonances apart from the Landau states of the inner core, corresponding to the so-called quasi-bound snake orbit states.Comment: 7 pages, 8 figure

    Confined magnetic guiding orbit states

    Full text link
    We show how snake-orbit states which run along a magnetic edge can be confined electrically. We consider a two-dimensional electron gas (2DEG) confined into a quantum wire, subjected to a strong perpendicular and steplike magnetic field B/BB/-B. Close to this magnetic step new, spatially confined bound states arise as a result of the lateral confinement and the magnetic field step. The number of states, with energy below the first Landau level, increases as BB becomes stronger or as the wire width becomes larger. These bound states can be understood as an interference between two counter-propagating one-dimensional snake-orbit states.Comment: 4 pages, 4 figure

    Resistance effects due to magnetic guiding orbits

    Full text link
    The Hall and magnetoresistance of a two dimensional electron gas subjected to a magnetic field barrier parallel to the current direction is studied as function of the applied perpendicular magnetic field. The recent experimental results of Nogaret {\em et al.} [Phys. Rev. Lett. {\bf 84}, 2231 (2000)] for the magneto- and Hall resistance are explained using a semi-classical theory based on the Landauer-B\"{u}ttiker formula. The observed positive magnetoresistance peak is explained as due to a competition between a decrease of the number of conducting channels as a result of the growing magnetic field, from the fringe field of the ferromagnetic stripe as it becomes magnetized, and the disappearance of snake orbits and the subsequent appearance of cycloidlike orbits.Comment: 7 pages, 7 figure

    Snake orbits and related magnetic edge states

    Full text link
    We study the electron motion near magnetic field steps at which the strength and/or sign of the magnetic field changes. The energy spectrum for such systems is found and the electron states (bound and scattered) are compared with their corresponding classical paths. Several classical properties as the velocity parallel to the edge, the oscillation frequency perpendicular to the edge and the extent of the states are compared with their quantum mechanical counterpart. A class of magnetic edge states is found which do not have a classical counterpart.Comment: 8 pages, 10 figure

    Magnetic Quantum Dot: A Magnetic Transmission Barrier and Resonator

    Full text link
    We study the ballistic edge-channel transport in quantum wires with a magnetic quantum dot, which is formed by two different magnetic fields B^* and B_0 inside and outside the dot, respectively. We find that the electron states located near the dot and the scattering of edge channels by the dot strongly depend on whether B^* is parallel or antiparallel to B_0. For parallel fields, two-terminal conductance as a function of channel energy is quantized except for resonances, while, for antiparallel fields, it is not quantized and all channels can be completely reflected in some energy ranges. All these features are attributed to the characteristic magnetic confinements caused by nonuniform fields.Comment: 4 pages, 4 figures, to be published in Physical Review Letter

    Communication breakdown: Limits of spectro-temporal resolution for the perception of bat communication calls

    Get PDF
    During vocal communication, the spectro‑temporal structure of vocalizations conveys important contextual information. Bats excel in the use of sounds for echolocation by meticulous encoding of signals in the temporal domain. We therefore hypothesized that for social communication as well, bats would excel at detecting minute distortions in the spectro‑temporal structure of calls. To test this hypothesis, we systematically introduced spectro‑temporal distortion to communication calls of Phyllostomus discolor bats. We broke down each call into windows of the same length and randomized the phase spectrum inside each window. The overall degree of spectro‑temporal distortion in communication calls increased with window length. Modelling the bat auditory periphery revealed that cochlear mechanisms allow discrimination of fast spectro‑temporal envelopes. We evaluated model predictions with experimental psychophysical and neurophysiological data. We first assessed bats’ performance in discriminating original versions of calls from increasingly distorted versions of the same calls. We further examined cortical responses to determine additional specializations for call discrimination at the cortical level. Psychophysical and cortical responses concurred with model predictions, revealing discrimination thresholds in the range of 8–15 ms randomization‑window length. Our data suggest that specialized cortical areas are not necessary to impart psychophysical resilience to temporal distortion in communication calls

    Quantum states in a magnetic anti-dot

    Full text link
    We study a new system in which electrons in two dimensions are confined by a non homogeneous magnetic field. The system consists of a heterostructure with on top of it a superconducting disk. We show that in this system electrons can be confined into a dot region. This magnetic anti-dot has the interesting property that the filling of the dot is a discrete function of the magnetic field. The circulating electron current inside and outside the anti-dot can be in opposite direction for certain bound states. And those states exhibit a diamagnetic to paramagnetic transition with increasing magnetic field. The absorption spectrum consists of many peaks, some of which violate Kohn's theorem, and which is due to the coupling of the center of mass motion with the other degrees of freedom.Comment: 6 pages, 12 ps figure

    Ballistic transport in random magnetic fields with anisotropic long-ranged correlations

    Full text link
    We present exact theoretical results about energetic and dynamic properties of a spinless charged quantum particle on the Euclidean plane subjected to a perpendicular random magnetic field of Gaussian type with non-zero mean. Our results refer to the simplifying but remarkably illuminating limiting case of an infinite correlation length along one direction and a finite but strictly positive correlation length along the perpendicular direction in the plane. They are therefore ``random analogs'' of results first obtained by A. Iwatsuka in 1985 and by J. E. M\"uller in 1992, which are greatly esteemed, in particular for providing a basic understanding of transport properties in certain quasi-two-dimensional semiconductor heterostructures subjected to non-random inhomogeneous magnetic fields

    Electronic structure of nuclear-spin-polarization-induced quantum dots

    Get PDF
    We study a system in which electrons in a two-dimensional electron gas are confined by a nonhomogeneous nuclear spin polarization. The system consists of a heterostructure that has non-zero nuclei spins. We show that in this system electrons can be confined into a dot region through a local nuclear spin polarization. The nuclear-spin-polarization-induced quantum dot has interesting properties indicating that electron energy levels are time-dependent because of the nuclear spin relaxation and diffusion processes. Electron confining potential is a solution of diffusion equation with relaxation. Experimental investigations of the time-dependence of electron energy levels will result in more information about nuclear spin interactions in solids

    Tunable Lyapunov exponent in inverse magnetic billiards

    Get PDF
    The stability properties of the classical trajectories of charged particles are investigated in a two dimensional stadium-shaped inverse magnetic domain, where the magnetic field is zero inside the stadium domain and constant outside. In the case of infinite magnetic field the dynamics of the system is the same as in the Bunimovich billiard, i.e., ergodic and mixing. However, for weaker magnetic fields the phase space becomes mixed and the chaotic part gradually shrinks. The numerical measurements of the Lyapunov exponent (performed with a novel method) and the integrable/chaotic phase space volume ratio show that both quantities can be smoothly tuned by varying the external magnetic field. A possible experimental realization of the arrangement is also discussed.Comment: 4 pages, 6 figure
    corecore